Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Met receptor tyrosine kinase plays a crucial role in the regulation of a large number of cellular processes and, when deregulated by overexpression or mutations, leads to tumor growth and invasion. The Y1235D mutation identified in metastases was shown to induce constitutive activation and a motile-invasive phenotype on transduced carcinoma cells. Wild-type Met activation requires phosphorylation of both Y1234 and Y1235 in the activation loop. We mapped the major phosphorylation sites in the kinase domain of a recombinant Met protein and identified the known residues Y1234 and Y1235 as well as a new phosphorylation site at Y1194 in the hinge region. Combining activating and silencing mutations at these sites, we characterized in depth the mechanism of activation of wild-type and mutant Met proteins. We found that the phosphotyrosine mimetic mutation Y1235D is sufficient to confer constitutive kinase activity, which is not influenced by phosphorylation at Y1234. However, the specific activity of this mutant was lower than that observed for fully activated wild-type Met and induced less phosphorylation of Y1349 in the signaling site, indicating that this mutation cannot entirely compensate for a phosphorylated tyrosine at this position. The Y1194F silencing mutation yielded an enzyme that could be activated to a similar extent as the wild type but with significantly slower activation kinetics, underlying the importance of this residue, which is conserved among different tyrosine kinase receptors. Finally, we observed different interactions of wild-type and mutant Met with the inhibitor K252a that may have therapeutic implications for the selective inhibition of this kinase.

Original publication

DOI

10.1021/bi051242k

Type

Journal article

Journal

Biochemistry

Publication Date

01/11/2005

Volume

44

Pages

14110 - 14119

Keywords

Animals, Aspartic Acid, Base Sequence, Binding Sites, Carbazoles, Enzyme Inhibitors, Gene Silencing, Humans, Indole Alkaloids, Kinetics, Mutation, Neoplasm Metastasis, Phenotype, Phosphorylation, Phosphotyrosine, Protein Conformation, Proto-Oncogene Proteins c-met, Receptor Protein-Tyrosine Kinases, Recombinant Proteins, Transduction, Genetic, Tumor Cells, Cultured, Tyrosine