Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Located close to the crown of the V3 type-specific neutralization loop of the human immunodeficiency virus type 1 (HIV-1) (IIIB) SU glycoprotein gp120, are several potential sites that should be susceptible to proteolytic cleavage by enzymes of trypsinlike or chymotrypsinlike specificity, or by aspartic proteinases. The linkages potentially sensitive to chymotryptic/aspartic proteinase cleavage are retained also within the equivalent domain of HIV-2 (ROD) gp105. We show that thrombin and tryptase cleave HIV-1 gp120 specifically at the tryptic site (GPGR decreases AFVT), and that cathepsin E, an endosomal aspartic proteinase, cleaves at the chymotrypsinlike site (GPGRAF decreases VT). HIV-2 gp105 is also cut by cathepsin E at a site (QIML decreases MSGH) in its V3 loop. Cleavage of HIV-1 gp120 by thrombin is enhanced by sCD4 binding, but is prevented by transient exposure of gp120 to nonionic detergent. Thrombin treatment of HIV-1 gp120 destroys the binding sites for some neutralizing monoclonal antibodies (MAbs) on the V3 loop, but does not affect the affinity of gp120 for sCD4. Conversely, binding of neutralizing MAbs to the HIV-1 V3 loop prior to addition of thrombin or cathepsin E blocks the cleavage reactions, and the binding of some HIV-positive sera to gp120 blocks thrombin cleavage. Analysis of published sequences suggests that all HIV-1, HIV-2, and simian immunovirus (SIV) isolates contain potential proteolytic cleavage sites at similar positions in their V3 loops or equivalent domains. We suggest that cleavage of the V3 loop by a cell surface or endosomal proteinase occurs during the HIV-cell fusion reaction, and that neutralizing antibodies directed against the V3 loop might act by inhibition of this reaction.

Original publication




Journal article


AIDS Res Hum Retroviruses

Publication Date





3 - 16


Amino Acid Sequence, Animals, Antibodies, Monoclonal, CD4 Antigens, Cathepsin E, Cathepsins, Cell Line, Cricetinae, Electrophoresis, Polyacrylamide Gel, Endopeptidases, HIV Envelope Protein gp120, HIV-1, HIV-2, Humans, Insecta, Membrane Fusion, Molecular Sequence Data, Neutralization Tests, Peptide Hydrolases, Thrombin