Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

The vanilloid receptor (VR1) is a ligand-gated ion channel, which plays an important role in nociceptive processing. Therefore, a pharmacological characterization of the recently cloned rat VR1 (rVR1) was undertaken. HEK293 cells stable expressing rVR1 (rVR1-HEK293) were loaded with Fluo-3AM and then incubated at 25 degrees C for 30 min with or without various antagonists or signal transduction modifying agents. Then intracellular calcium concentrations ([Ca(2+)](i)) were monitored using FLIPR, before and after the addition of various agonists. The rank order of potency of agonists (resiniferatoxin (RTX)>capsaicin>olvanil>PPAHV) was as expected, and all were full agonists. The potencies of capsaicin and olvanil, but not RTX or PPAHV, were enhanced at pH 6.4 (pEC(50) values of 7.47+/-0.06, 7.16+/-0.06, 8.19+/-0.06 and 6.02+/-0.03 respectively at pH 7.4 vs 7.71+/-0.05, 7.58+/-0.14, 8.10+/-0.05 and 6.04+/-0.08 at pH 6.4). Capsazepine, isovelleral and ruthenium red all inhibited the capsaicin (100 nM)-induced Ca(2+) response in rVR1-HEK293 cells, with pK(B) values of 7.52+/-0.08, 6.92+/-0.11 and 8.09+/-0.12 respectively (n=6 each). The response to RTX and olvanil were also inhibited by these compounds. None displayed any agonist-like activity. The removal of extracellular Ca(2+) abolished, whilst inhibition of protein kinase C with chelerythrine chloride (10 microM) partially (approximately 20%) inhibited, the capsaicin (10 microM)-induced Ca(2+) response. However, tetrodotoxin (3 microM), nimodipine (10 microM), omega-GVIA conotoxin (1 microM), thapsigargin (1 microM), U73122 (3 microM) or H-89 (3 microM) had no effect on the capsaicin (100 nM)-induced response. In conclusion, the recombinant rVR1 stably expressed in HEK293 cells acts as a ligand-gated Ca(2+) channel with the appropriate agonist and antagonist pharmacology, and therefore is a suitable model for studying the effects of drugs at this receptor.

Original publication

DOI

10.1038/sj.bjp.0703390

Type

Journal article

Journal

Br J Pharmacol

Publication Date

06/2000

Volume

130

Pages

916 - 922

Keywords

Animals, Calcium, Capsaicin, Cell Line, DNA, Recombinant, Diterpenes, Dose-Response Relationship, Drug, Fluorometry, Humans, Hydrogen-Ion Concentration, Ligands, Phorbol Esters, Rats, Receptors, Drug, Ruthenium Red, Sesquiterpenes, Transfection