Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

OBJECTIVE: The specificity of CD8(+) T cells is critical for early control of founder/transmitted and reactivated HIV-1. To tackle HIV-1 variability and escape, we designed vaccine immunogen HIVconsv assembled from 14 highly conserved regions of mainly Gag and Pol proteins. When administered to HIV-1-negative human volunteers in trial HIV-CORE 002, HIVconsv vaccines elicited CD8(+) effector T cells which inhibited replication of up to 8 HIV-1 isolates in autologous CD4(+) cells. This inhibition correlated with interferon-γ production in response to Gag and Pol peptide pools, but direct evidence of the inhibitory specificity was missing. Here, we aimed to define through recognition of which epitopes these effectors inhibit HIV-1 replication. DESIGN: CD8(+) T-cells from the 3 broadest HIV-1 inhibitors out of 23 vaccine recipients were expanded in culture by Gag or Pol peptide restimulation and tested in viral inhibition assay (VIA) using HIV-1 clade B and A isolates. METHODS: Frozen PBMCs were expanded first using peptide pools from Gag or Pol conserved regions and tested on HIV-1-infected cells in VIA or by individual peptides for their effector functions. Single peptide specificities responsible for inhibition of HIV-1 replication were then confirmed by single-peptide expanded effectors tested on HIV-1-infected cells. RESULTS: We formally demonstrated that the vaccine-elicited inhibitory human CD8(+) T cells recognized conserved epitopes of both Pol and Gag proteins. We defined 7 minimum epitopes, of which 3 were novel, presumably naturally subdominant. The effectors were oligofunctional producing several cytokines and chemokines and killing peptide-pulsed target cells. CONCLUSIONS: These results implicate the use of functionally conserved regions of Pol in addition to the widely used Gag for T-cell vaccine design. Proportion of volunteers developing these effectors and their frequency in circulating PBMC are separate issues, which can be addressed, if needed, by more efficient vector and regimen delivery of conserved immunogens.

Original publication

DOI

10.1016/j.vaccine.2015.12.021

Type

Journal article

Journal

Vaccine

Publication Date

24/02/2016

Volume

34

Pages

1215 - 1224

Keywords

Conserved region vaccine, HIV-1 vaccines, Human CD8(+) T cells, T cell epitopes, T cell vaccines, Virus inhibition assay (VIA), AIDS Vaccines, CD8-Positive T-Lymphocytes, Epitope Mapping, Epitopes, T-Lymphocyte, HIV Core Protein p24, HIV Infections, HIV-1, Humans, Virus Replication, pol Gene Products, Human Immunodeficiency Virus