Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

The preexisting HIV-1-specific T cell repertoire must influence both the immunodominance of T cells after infection and immunogenicity of vaccines. We directly compared two methods for measuring the preexisting CD4(+) T cell repertoire in healthy HIV-1-negative volunteers, the HLA-peptide tetramer enrichment and T cell library technique, and show high concordance (r = 0.989). Using the library technique, we examined whether naive, central memory, and/or effector memory CD4(+) T cells specific for overlapping peptides spanning the entire HIV-1 proteome were detectable in 10 HLA diverse, HIV-1-unexposed, seronegative donors. HIV-1-specific cells were detected in all donors at a mean of 55 cells/million naive cells and 38.9 and 34.1 cells/million in central and effector memory subsets. Remarkably, peptide mapping showed most epitopes recognized by naive (88%) and memory (56%) CD4(+) T cells had been previously reported in natural HIV-1 infection. Furthermore, 83% of epitopes identified in preexisting memory subsets shared epitope length matches (8-12 amino acids) with human microbiome proteins, suggestive of a possible cross-reactive mechanism. These results underline the power of a proteome-wide analysis of peptide recognition by human T cells for the identification of dominant antigens and provide a baseline for optimizing HIV-1-specific helper cell responses by vaccination.

Original publication

DOI

10.1084/jem.20130555

Type

Journal article

Journal

J Exp Med

Publication Date

30/06/2014

Volume

211

Pages

1273 - 1280

Keywords

AIDS Vaccines, Antigens, Viral, CD4-Positive T-Lymphocytes, Cross Reactions, Epitopes, T-Lymphocyte, Female, HIV-1, Humans, Immunologic Memory, Male, Microbiota, Peptides, Proteome, Viral Proteins