Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The alpha-toxin from Staphylococcus aureus undergoes several conformational changes from the time it is released from the bacterium to the moment it forms a channel in the plasma membrane of its target cell. It is initially a soluble monomer, which undergoes membrane binding and oligomerization into a heptameric ring and finally inserts into the lipid bilayer to form a pore. Here we have analyzed the stability of different forms of the alpha-toxin (monomer as well as heptamers in solution, bound to the membrane and membrane-inserted) by differential scanning calorimetry and limited proteolysis. Data presented here show that, in contrast to both the membrane-bound prepore complex and the monomer in solution, the membrane-inserted alpha-toxin channel does not undergo cooperative unfolding and is highly susceptible to proteases. These observations suggest that the channel has a looser conformation. Interestingly, resistance to proteases could be recovered upon solubilization of the channel, indicating that the loss of rigid tertiary packing only occurred upon membrane insertion. Far-UV CD data, however, suggest that the transmembrane beta-barrel must be stably folded and that therefore only the Cap and Rim domains of the channel are loosely packed. All together, our data show that the alpha-toxin channel is not a rigid complex within the membrane but adopts a rather flexible conformation.

Original publication




Journal article



Publication Date





4296 - 4302


Bacterial Toxins, Hemolysin Proteins, Hydrolysis, Ion Channels, Liposomes, Models, Molecular, Peptide Fragments, Phosphatidylcholines, Phosphatidylglycerols, Pronase, Protein Conformation, Protein Folding, Staphylococcus, Temperature