Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The high mobility group protein HMGB1 is a small, highly abundant protein that binds to DNA in a non-sequence-specific manner. HMGB1 consists of 2 DNA binding domains, the HMG boxes A and B, followed by a short basic region and a continuous stretch of 30 glutamate or aspartate residues. Isothermal titration calorimetry was used to characterize the binding of HMGB1 to the double-stranded model DNAs poly(dAdT).(dTdA) and poly(dGdC).(dCdG). To elucidate the contribution of the different structural motifs to DNA binding, calorimetric measurements were performed comparing the single boxes A and B, the two boxes plus or minus the basic sequence stretch (AB(bt) and AB), and the full-length HMGB1 protein. Thermodynamically, binding of HMGB1 and all truncated constructs to duplex DNA was characterized by a positive enthalpy change at 15 degrees C. From the slopes of the temperature dependence of the binding enthalpies, heat capacity changes of -0.129 +/- 0.02 and -0.105 +/- 0.05 kcal mol(-1) K(-1) were determined for box A and full-length HMGB1, respectively. Significant differences in the binding characteristics were observed using full-length HMGB1, suggesting an important role for the acid tail in modulating DNA binding. Moreover, full-length HMGB1 binds differently these two DNA templates: binding to poly(dAdT).(dTdA) was cooperative, had a larger apparent binding site size, and proceeded with a much larger unfavorable binding enthalpy than binding to poly(dGdC).(dCdG).

Type

Journal article

Journal

Biochemistry

Publication Date

28/08/2001

Volume

40

Pages

10254 - 10261

Keywords

Aspartic Acid, Base Pairing, Base Sequence, Binding Sites, Calorimetry, Cloning, Molecular, DNA, Glutamic Acid, High Mobility Group Proteins, Kinetics, Models, Molecular, Nucleic Acid Conformation, Poly dA-dT, Polydeoxyribonucleotides, Protein Conformation, Recombinant Proteins, Repetitive Sequences, Amino Acid, Thermodynamics