Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

HMGB1 (high mobility group B1) is a conserved chromosomal protein composed of two similar DNA binding domains (HMG box A and box B) linked by a short basic stretch to an acidic C-terminal tail of 30 residues. The acidic tail modulates the DNA binding properties of HMGB1, and its length differentiates the various HMGB family members. We synthesized a peptide that corresponds to the acidic tail in HMGB1 (T-peptide) and studied its binding to the single boxes and to the fragment corresponding to tailless HMGB1 (designated as AB(bt) fragment). CD spectroscopy showed that T-peptide stabilizes significantly the AB(bt) fragment and that the complex has an identical thermal stability as full-length HMGB1. Calorimetric and NMR data showed that T-peptide binds with a dissociation constant of 9 microM to box A and much more weakly to box B. (1)H-(15)N HSQC spectra of full-length HMGB1 and of the AB(bt) fragment are very similar; the small chemical shift differences that exist correspond to those residues of the AB(bt) fragment that were affected by the addition of the T-peptide. We conclude that the T-peptide mimics closely the acidic tail and that the basic stretch and the acidic tail form an extended and flexible segment. The tail interacts with specific residues in the boxes and shields them from other interactions.

Original publication

DOI

10.1021/bi049364k

Type

Journal article

Journal

Biochemistry

Publication Date

28/09/2004

Volume

43

Pages

11992 - 11997

Keywords

Circular Dichroism, HMGB1 Protein, Hydrogen-Ion Concentration, Models, Molecular, Nuclear Magnetic Resonance, Biomolecular, Peptide Fragments, Pliability, Protein Binding, Protein Structure, Tertiary, Static Electricity