Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

BACKGROUND: Macrophage-migration inhibitory factor (MIF), one of the first cytokines described, has a broad range of proinflammatory properties. The genome sequencing project of Plasmodium falciparum identified a parasite homologue of MIF. The protein is expressed during the asexual blood stages of the parasite life cycle that cause malarial disease. The identification of a parasite homologue of MIF raised the question of whether it affects monocyte function in a manner similar to its human counterpart. METHODS: Recombinant P. falciparum MIF (PfMIF) was generated and used in vitro to assess its influence on monocyte function. Antibodies generated against PfMIF were used to determine the expression profile and localization of the protein in blood-stage parasites. Antibody responses to PfMIF were determined in Kenyan children with acute malaria and in control subjects. RESULTS: PfMIF protein was expressed in asexual blood-stage parasites, localized to the Maurer's cleft. In vitro treatment of monocytes with PfMIF inhibited random migration and reduced the surface expression of Toll-like receptor (TLR) 2, TLR4, and CD86. CONCLUSIONS: These results indicate that PfMIF is released during blood-stage malaria and potentially modulates the function of monocytes during acute P. falciparum infection.

Original publication

DOI

10.1086/511309

Type

Journal article

Journal

J Infect Dis

Publication Date

15/03/2007

Volume

195

Pages

905 - 912

Keywords

Animals, Antibody Formation, Blotting, Northern, Cloning, Molecular, DNA Primers, Enzyme-Linked Immunosorbent Assay, Erythrocytes, Humans, Inflammation, Intramolecular Oxidoreductases, Macrophage Migration-Inhibitory Factors, Malaria, Falciparum, Monocytes, Plasmodium falciparum, Protozoan Proteins