Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sequential mutations were introduced into the V2 region of human immunodeficiency virus (HIV) type 1 HXB2, affecting the length, charge, and number of potential glycosylation sites. The insertions had no effect on cytopathicity or on the ability of virus to replicate in peripheral blood mononuclear cells and established T-cell lines. However, deletion of amino acids 186 to 188, encoding a conserved glycosylation site, resulted in a nonviable virus, suggesting a minimal length requirement of 40 amino acids for a functional V2 loop. However, all amino acid insertions affected the sensitivity of the variants to neutralization by soluble CD4 and monoclonal antibodies specific for epitopes in the V3 and CD4 binding site regions. Furthermore, these mutant viruses showed resistance to neutralization by HIV-positive human sera. Soluble gp120 mutant glycoproteins showed increased affinities for soluble CD4 and monoclonal antibodies specific for a number of epitopes overlapping the CD4 binding site, confirming that length increases in V2 affect exposure of the CD4 binding site. In summary, these data demonstrate that differences in V2 length modulate immunoreactivity of the envelope glycoprotein and support an association between the V2 and CD4 binding site regions.

Original publication

DOI

10.1128/jvi.71.1.759-765.1997

Type

Journal article

Journal

Journal of virology

Publication Date

01/1997

Volume

71

Pages

759 - 765

Addresses

University of Reading, School of Animal and Microbial Sciences, Whiteknights, United Kingdom.

Keywords

Hela Cells, Humans, HIV-1, Receptors, Virus, HIV Envelope Protein gp120, Neutralization Tests, Binding Sites, Protein Conformation, Polymorphism, Genetic