Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:p>Acetylation of lysine residues is a post-translational modification with broad relevance to cellular signalling and disease biology. Enzymes that ‘write’ (histone acetyltransferases, HATs) and ‘erase’ (histone deacetylases, HDACs) acetylation sites are an area of extensive research in current drug development, but very few potent inhibitors that modulate the ‘reading process’ mediated by acetyl lysines have been described. The principal readers of ɛ-<jats:italic>N</jats:italic>-acetyl lysine (<jats:italic>K</jats:italic><jats:sub>ac</jats:sub>) marks are bromodomains (BRDs), which are a diverse family of evolutionary conserved protein-interaction modules. The conserved BRD fold contains a deep, largely hydrophobic acetyl lysine binding site, which represents an attractive pocket for the development of small, pharmaceutically active molecules. Proteins that contain BRDs have been implicated in the development of a large variety of diseases. Recently, two highly potent and selective inhibitors that target BRDs of the BET (bromodomains and extra-terminal) family provided compelling data supporting targeting of these BRDs in inflammation and in an aggressive type of squamous cell carcinoma. It is likely that BRDs will emerge alongside HATs and HDACs as interesting targets for drug development for the large number of diseases that are caused by aberrant acetylation of lysine residues.</jats:p>

Original publication

DOI

10.1017/s1462399411001992

Type

Journal article

Journal

Expert Reviews in Molecular Medicine

Publisher

Cambridge University Press (CUP)

Publication Date

09/2011

Volume

13