Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A series of small-molecule YEATS4 binders have been discovered as part of an ongoing research effort to generate high-quality probe molecules for emerging and/or challenging epigenetic targets. Analogues such as 4d and 4e demonstrate excellent potency and selectivity for YEATS4 binding versus YEATS1,2,3 and exhibit good physical properties and in vitro safety profiles. A new X-ray crystal structure confirms direct binding of this chemical series to YEATS4 at the lysine acetylation recognition site of the YEATS domain. Multiple analogues engage YEATS4 with nanomolar potency in a whole-cell nanoluciferase bioluminescent resonance energy transfer assay. Rodent pharmacokinetic studies demonstrate the competency of several analogues as in vivo-capable binders.

Original publication

DOI

10.1021/acs.jmedchem.2c01421

Type

Journal article

Journal

Journal of medicinal chemistry

Publication Date

01/2023

Volume

66

Pages

460 - 472

Addresses

Pfizer Medicine Design, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States.

Keywords

Gene Expression Regulation, Epigenesis, Genetic, Protein Processing, Post-Translational, Acetylation, Protein Domains