High level expression in Chinese hamster ovary cells of soluble forms of CD4 T lymphocyte glycoprotein including glycosylation variants.
Davis SJ., Ward HA., Puklavec MJ., Willis AC., Williams AF., Barclay AN.
The CD4 cell surface antigen is of interest as a marker of T lymphocytes that recognize foreign antigens in the context of MHC Class II antigen, as a receptor for the human immunodeficiency virus (HIV) and as a member of the immunoglobulin superfamily (IgSF) with four Ig-like domains present in the extracellular domain. In order to produce large amounts of soluble CD4 for x-ray crystallography and other molecular studies, a recently developed expression system based on selection via glutamine synthetase was used. Expression was attempted for rat CD4 corresponding to the full extracellular sequence (sCD4; domains 1-4), the NH2-terminal half (domains 1 and 2) and the first domain alone. Stable transfected Chinese hamster ovary cell lines were obtained that expressed sCD4 and sCD4 (half) at typical maximal levels in spent tissue culture supernatant of greater than 80 and 25 mg/liter, respectively. Domain 1 alone was not expressed and introduction of a N-linked glycosylation site did not facilitate expression. The role of glycosylation in the expression of sCD4 was investigated by mutagenesis of the constructs to remove each of the two N-linked glycosylation sites in turn and both together. All three forms were expressed at 60-120 mg/liter. The sCD4 (half) was not expressed after deletion of its N-linked site. The disulfide bonds of sCD4 were determined to be within domains 1, 2, and 4 and isolation of glycopeptides showed that both N-linked sites were glycosylated. Analysis of the hydrodynamic properties of sCD4 suggested that the molecule adopted an extended conformation in solution rather than folding to form a compact structure like an Fab. The possibility of dimerisation of CD4 was investigated but sCD4 dimers were not seen at an affinity cut-off of about 4 x 10(5) M-1.