Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The interaction between beta-catenin and Tcf family members is crucial for the Wnt signal transduction pathway, which is commonly mutated in cancer. This interaction extends over a very large surface area (4800 A(2)), and inhibiting such interactions using low molecular weight inhibitors is a challenge. However, protein surfaces frequently contain "hot spots," small patches that are the main mediators of binding affinity. By making tight interactions with a hot spot, a small molecule can compete with a protein. The Tcf3/Tcf4-binding surface on beta-catenin contains a well-defined hot spot around residues K435 and R469. A 17,700 compounds subset of the Pharmacia corporate collection was docked to this hot spot with the QXP program; 22 of the best scoring compounds were put into a biophysical (NMR and ITC) screening funnel, where specific binding to beta-catenin, competition with Tcf4 and finally binding constants were determined. This process led to the discovery of three druglike, low molecular weight Tcf4-competitive compounds with the tightest binder having a K(D) of 450 nM. Our approach can be used in several situations (e.g., when selecting compounds from external collections, when no biochemical functional assay is available, or when no HTS is envisioned), and it may be generally applicable to the identification of inhibitors of protein-protein interactions.

Original publication

DOI

10.1002/prot.20955

Type

Journal article

Journal

Proteins

Publication Date

01/07/2006

Volume

64

Pages

60 - 67

Keywords

Binding Sites, Crystallography, X-Ray, Humans, Models, Molecular, Mutation, Neoplasms, Protein Conformation, Proteins, Software, User-Computer Interface, beta Catenin