Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The HD-PTP protein has been described as a tumor suppressor candidate and based on its amino acid sequence, categorized as a classical non-transmembrane protein tyrosine phosphatase (PTP). To date, no HD-PTP phosphorylated substrate has been identified and controversial results concerning its catalytic activity have been recently reported. METHODOLOGY AND RESULTS: Here we report a rigorous enzymatic analysis demonstrating that the HD-PTP protein does not harbor tyrosine phosphatase or lipid phosphatase activity using the highly sensitive DiFMUP substrate and a panel of different phosphatidylinositol phosphates. We found that HD-PTP tyrosine phosphatase inactivity is caused by an evolutionary conserved amino acid divergence of a key residue located in the HD-PTP phosphatase domain since its back mutation is sufficient to restore the HD-PTP tyrosine phosphatase activity. Moreover, in agreement with a tumor suppressor activity, HD-PTP expression leads to colony growth reduction in human cancer cell lines, independently of its catalytic PTP activity status. CONCLUSION: In summary, we demonstrate that HD-PTP is a catalytically inactive protein tyrosine phosphatase. As such, we identify one residue involved in its inactivation and show that its colony growth reduction activity is independent of its PTP activity status in human cancer cell lines.

Original publication

DOI

10.1371/journal.pone.0005105

Type

Journal article

Journal

PLoS One

Publication Date

2009

Volume

4

Keywords

Amino Acid Sequence, Catalysis, Cell Line, Conserved Sequence, DNA, Complementary, Humans, Kinetics, Protein Tyrosine Phosphatases, Non-Receptor, Sequence Homology, Amino Acid